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ABSTRACT: Brassicaceae vegetables are considered to be a staple food in many areas all over the world. Bras-
sica species are not only known for their high fat and protein contents for human and animal consump-
tion, but Brassicaceae vegetables are recognized as a rich source of nutrients such as vitamins (carotenoids,
tocopherol, ascorbic acid, folic acid), minerals (Cu, Zn, P, Mg, among others), carbohydrates (sucrose and
glucose), amino acids (for example, L-alanine, L-aspartic acid, L-glutamic acid, L-glutamine, L-histidine,
L-methionine, L-phenylalanine, L-threonine, L-tryptophan, and L-valine), and different groups of phytochem-
icals such as indole phytoalexins (brassinin, spirobrassinin, brassilexin, camalexin, 1-methoxyspirobrassinin,
1-methoxyspirobrassinol, and methoxyspirobrassinol methyl ether), phenolics (such as feruloyl and isoferu-
loylcholine, hydroxybenzoic, neochlorogenic, chlorogenic, caffeic, p-coumaric, ferulic, and sinapic acids, an-
thocyanins, quercetin, and kaempferol), and glucosinolates (mainly glucoiberin, glucoraphanin, glucoalyssin,
gluconapin, glucobrassicanapin, glucobrassicin, gluconasturtiin, and neoglucobrassicin). All of these phytochem-
icals contribute to the reported antioxidant, anticarcinogenic, and cardiovascular protective activities of Bras-
sica vegetables. However, not all members of this family are equal from a nutritional viewpoint, since significant
qualitative variations in the phytochemical profiles of Brassica species and varieties suggest differences in the
health-promoting properties among these vegetables. In this article, Brassica phytochemicals with their nutritional
value and health-promoting activities are discussed to give an overview of the literature for Brassica as a staple crop.

Introduction
The Brassicaceae (Cruciferae) family is composed of 350 gen-

era and about 3500 species (Sasaki and Takahashi 2002), includ-
ing some crops of great economical importance such as Brassica
napus L., Brassica rapa L., and Sinapis alba L. (O’Callaghan and
others 2000; Onyilagha and others 2003). These species are used
as food, spices, and as a source of vegetable oils (Kaushik and
Agnihotri 2000). The Brassicaceae vegetables represent a major
part of the human diet (Verkerk and others 1997) being con-
sumed by people all over the world (Font and others 2005; Sardi
and Tordai 2005; Ferreres and others 2007) and are considered
important food crops in China, Japan, India, and European coun-
tries (Heaney and Fenwick 1995; Sasaki and Takahashi 2002;
Kusznierewicz and others 2008). Over the past 3 decades, Bras-
sica production has grown steadily becoming an important source
of oil and protein of plant origin for animal and human nutrition,
respectively. Rapeseed (canola) ranks currently as the 3rd source
of vegetable oil (after soy and palm) and the 3rd leading source
of oil meal (after soy and cotton) (Thiyam and others 2004). Bras-
sica is an inexpensive, though very nutritive, source of food, pro-
viding nutrients and health-promoting phytochemicals such as
phenolic compounds, vitamins (Dekker and others 2000; Vallejo
and others 2002, 2003, 2004), phytic acid, fiber, soluble sugars
(Pedroche and others 2004), glucosinolates (Fowke and others
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2003), minerals, polyphenols (Heimler and others 2005), fat, and
carotenoids (Figure 1) (Zakaria-Rungkat and others 2000). There
is currently much interest in identifying phytochemicals with use-
ful biological activity in food (Rice-Evans and others 1997), and
any significant finding related to the presence of valuable com-
pounds in Brassica species will be welcomed by the food industry
(Thiyam and others 2004).

There is ever-increasing evidence that a higher consumption
of Brassica vegetables, for example, broccoli, cabbage, kale,
mustard greens, Brussels sprouts, and cauliflower, reduces the
risk of several types of cancer (Kristal and Lampe 2002; Wang
and others 2004). The anticarcinogenic effect of these vegetables
has been attributed to decomposition products of glucosinolates,
indoles, and iso-thiocyanates (Zukalova and Vasak 2002), phy-
toalexins, and other antioxidants (Samaila and others 2004; Hanf
and Gonder 2005). Indole-3-carbinol, a natural component of
Brassica vegetables (Staub and others 2002), has an interesting
anticarcinogenic potential, acting via different metabolic and hor-
monal pathways (Hanf and Gonder 2005) and have been proved
to reduce the incidence of tumors in reproductive organs (Staub
and others 2002) and the growth of human breast cancer cells
(Cover and others 1998).

Overall, to date, the most promising anticarcinogenic dietary
compounds have been detected in cruciferous vegetables and
further elucidation of their protective mechanisms and the iden-
tification of other active constituents may contribute to the
development of highly health-supporting Brassica varieties
(Steinkellner and others 2001). Extracts of the different species of
the Brassicaceae family show antioxidant effects (Azuma and oth-
ers 1999) and decrease oxidative damage (Ferguson 1999), while
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Figure 1 --- General biosynthesis
pathway for Brassicacae metabolites
(Dixon and Paiva 1995; Graser and
others 2000; Dixon 2001; Shirley
2001; O’Connor and Maresh 2006).

the juice of some Brassica species has been proved to protect
human hepatoma cells from the genotoxic effects of carcinogens
(Steinkellner and others 2001). However, compounds such as
glucosinolates and phytates may also have a negative effect
on human and animal health. For example, glucosinolates and
glucosinolate by-products can be toxic and are responsible for
the bitter, hot, and pungent flavors of Brassicaceae vegetables
(Kopsell and others 2003). Also, thiocyanates, isothiocyanates,
and oxazolidine-2-thiones have been shown to be goitrogenic
(Mithen and others 2000), and while Brassicaceae vegetables can
be a good source of minerals, some antinutrients, such as phy-
tates, can decrease their bioavailability (Matthaus and Angelini
2005).

The purpose of this article is to provide an overview of health-
affecting compounds identified in the Brassica genus.

Vitamins
Brassica vegetables contain high levels of vitamins (Heimler

and others 2005), including carotenes, tocopherols (Kurilich and
others 1999), vitamin C, and folic acid (Verhoeven and others
1996) (Table 1). It is a well-known fact that the first 3 vitamins
have the potential to prevent and treat malignant and degen-
erative diseases (Kurilich and others 1999). Broccoli (Brassica
oleracea) extracts are protective against reactive oxygen species

Table 1 --- Variation of vitamins (μg/g) among different Brassicaceae vegetables on fresh weight basis.

Ascorbic acid α-Carotene β-Carotene α-Tocopherol Folate

Broccoli 748 ± 62a 0.3b 8.9b 16.2b 1.771d

Kale 186e 0.6b 48.6b 19.2b –
Cauliflower 499 ± 53a – 72 ± 0.5g 1.7b 0.53e

Chinese cabbage 253a – 0.1c 0.8c 0.81f

White cabbage 188 ± 13a 0.02b 0.8b 1.7b –
Brussels sprouts 158c – 1.4c 1.5c –
aBahorun and others 2004.
bKurilich and others 1999.
cSingh and others 2007.
dMcKillop and others 2002.
eBoonstra and others 2002.
fDevi and others 2008.
gSingh and others 2001.

(ROS) presumably due to the presence of vitamin C, quercetin,
kaempferol, lutein, zeaxanthin (Kurilich and others 2002), α-
tocopherol, γ -tocopherol, and β-carotene (Eberhardt and oth-
ers 2005). Bioavailabilty is a critical feature in the assessment
of the role of these compounds in human health. When 200
g of broccoli were consumed by healthy volunteers, significant
changes, in serum, in both men and women were observed only
for lutein, whereas for γ -tocopherol a significant change was
detected in women only, whereas no changes were observed
for α-tocopherol, β-carotene, and retinol (Granado and other
2006).

Carotenoids
In some Brassica species, carotenoid content is 2-fold higher

than in spinach (Miyazawa and others 2005). Sixteen carotenoids
were identified by Wills and Rangga (1996) in B. chinensis,
B. parachinensis, and B. pekinensis, out of which lutein and
β-carotene were the most abundant (Riso and others 2003).
Lutein has also been isolated from extracts of fresh raw kale
(Brassica oleracea var. Acephala) (Khachik and others 1999)
and high levels of other carotenoids, mainly β-carotene, were
also detected (Kurilich and others 1999; Kopsell and others
2003; Lefsrud and others 2006). Two other vegetables, Brussels
sprouts and green cabbage, have been reported to contain signif-
icant amounts of trans-β-carotene and cis-β-carotene (Podsedek
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2005). Carotenoids present in dark green leafy vegetables might
be involved in the prevention of several diseases related to ox-
idative stress (Riso and others 2003).

Tocopherols
The predominant tocopherol in all Brassica vegetables is α-

tocopherol with the exception of cauliflower, which predomi-
nantly contains γ -tocopherol (Piironen and others 1986). The
tocopherol content of rapeseed oil consists of 64% γ -tocopherol,
35% α-tocopherol, and less than 1% is the mixture of δ-
tocopherol and plastochromanol-8 (Goffman and Mollers 2000).

Vitamin C
High levels of vitamin C have been reported in Chinese cab-

bage, broccoli, cauliflower, and cabbage (Bahorun and oth-
ers 2004) (Table 1). The content of this vitamin in different
cultivars of cabbage (Brassica oleraceae L.) ranges from 12 to
112.5 mg/100 g (Goldoni and others 1983).

Folic acid
Raw broccoli (McKillop and others 2002), cauliflower

(Boonstra and others 2002), and cabbage contain folic acid
(Puupponen-Pimia and others 2003) (Table 1), a scarce and im-
portant vitamin that acts as a coenzyme in many single carbon
transfer reactions in the synthesis of DNA, RNA, and protein
components (Devi and others 2008). Folic acid reduces the risk
of neural tube defects (NTDs) and may be associated with the
reduced risk of vascular disease and cancer (Bailey and others
2003; Cornel and others 2005), while low-folate intake has been
identified as a main cause of anemia (Bollheimer and others
2005).

Minerals
Brassica plants have been found to be rich in many miner-

als including calcium and iron (Miyazawa and others 2005).
Among the green leafy vegetables, B. oleracea L. acephala (kale)
is an excellent source of minerals (Kopsell and others 2003), ac-
cumulating high levels of P, S, Cl, Ca, Fe, Sr, and K (Table 2)
(Tirasoglu and others 2005). Broccoli accumulates Se to concen-
trations many times above that found in soil, which may greatly
enhance its health-promoting properties (Finley 2003). Differ-
ent Brassica vegetables such as cauliflower, bok choy (B. rapa)
stems and leaves, broccoli (B. oleracea v. botrytis), and kale (B.
oleracea v. acephala) are reported to have high mineral con-
tents (Puupponen-Pimia and others 2003) (Table 2). Interestingly,
all these Brassica vegetables exhibit excellent calcium bioavail-
ability (Heaney and others 1993). Cabbage leaf (B. oleracea var.
capitata) also contains potentially useful amounts of copper, zinc,
iron, and a number of other essential minerals and trace elements
(Glew and others 2005).

Table 2 --- Variation of minerals (μg/g) among different Brassicaceae vegetables on fresh weight basis.

Broccoli Kale Cauliflower Chinese cabbage White cabbage Brussels sprouts

Ca 272 ± 20a 2860 ± 430b 175 ± 17a 470 ± 60b 440 ± 60b 356 ± 13a

Fe 8.7 ± 0.5a 4 ± 2b 5.0 ± 0.3a 2 ± 0.3b 1.4 ± 0.3b 7.6 ± 0.2a

Cu 0.94 ± 0.07a 0.4 ± 0.2b 0.56 ± 0.07a 0.4 ± 0.2b 0.5 ± 0.5b 0.9 ± 0.09a

Mg 181 ± 8a 510 ± 40b 145 ± 22a 130 ± 30b 140 ± 20b 207 ± 12a

K 2890 ± 70a 7120 ± 5170b 2210 ± 140a 2280 ± 1120b 2660 ± 870b 4250 ± 250a

Zn 9.5 ± 0.3a 2.9 ± 0.5b 6.4 ± 0.3a 2.3 ± 0.4b 2 ± 1b 5.8 ± 0.4a

Na 180 ± 6a 120 ± 40b 192 ± 27a 50 ± 20b 30 ± 10b 107 ± 7a

Mn 1.92 ± 0.09a 3 ± 1b 1.31 ± 0.07a 0.5 ± 1.4b 2 ± 1b 2.31 ± 0.13a

aKmiecik and others 2007.
bKawashima and Soares 2003.

Brassica can be cultivated under hydroponic conditions such
that lead to high levels of nutritionally important minerals such as
Cr, Fe, Mn, Se, and Zn. Owing to reproducible and high concen-
tration of minerals in the edible plant tissue small quantities of
this enriched plant can be processed to make capsules or tablets
that supply 100% of the recommended daily intake of these ele-
ments, with the advantage of using a natural plant source (Elless
and others 2000). However, the bioavailability of some of these
minerals might be reduced by the presence of glucosinolates,
phytates, and phenolics (Matthaus and Angelini 2005).

Heavy metals (for example, Mo, B, Co, Se, Cd, Pb, Cr, Ni, Hg,
and As) and others such as Cu, Zn, Mn, and Fe may be found in
high concentration in contaminated soils and have toxic effects
on plants, animals, and human beings (He and others 2005).
The use of metal-accumulating plants to remove toxic metals
from soil is known as phytoremediation (Salt and others 1995)
and Brassica species such as B. oleracea and B. napus, known
for their metal accumulator properties, are used for this purpose
(Banuelos 2006). However, this characteristic, which constitutes
an advantage for the former use entails, an important toxicologi-
cal risk if these fruits and vegetables grown in contaminated soils
are ingested (Dudka and Miller 1999).

Lipids
Rapeseed oil is one of the most common edible oils in the

world. Its nutritive value is excellent due to its unsaturated fatty
acid content (Naczk and others 1998). Mustard oil is also a signif-
icant source of unsaturated fatty acids containing about 94.2%,
and only 5.4% saturated fatty acids. These are recognized as es-
sential dietary elements with important effects on human health
(Choudhury and others 1997). Mustard oil contains linolenic
acid, 21.4% (omega-3); palmitic acid, 2.9%; palmitoleic acid,
0.2%; stearic acid, 1%; oleic acid, 19.4%; linoleic acid (omega-
6), 9.7%; and erucic acid, 44.4% (Dwivedi and others 2003),
showing an inhibition of mutagenicity (Choudhury and others
1997). Oil content in seeds of different B. campestris genotypes
varies from 38.9% to 44.6% and major fatty acids found are oleic,
linoleic, linolenic, eicosaenoic, erucic acid ranging from 10.1%
to 17.3%, 5.9% to 14.5%, 5.2% to 15.0%, 7.7% to 13.7%, and
39.6% to 59.9%, respectively (Ahuja and others 1989). Canola
seed oil is one of the richer sources of omega-3-unsaturated fatty
acids (Hanf and Gonder 2005) and, in particular, of α-linolenic
acid (Vermunt and others 2001). The oil of commercial B. napus
L. is rich in oleic acid and contains moderate levels of linoleic
and linolenic acid (Adamska and others 2004).

Cauliflower is considered to be a food of high nutritional
value and some authors relate its quality to the stability of its
fatty acids. Environmental stress may enhance the fatty mat-
ter content (linolenic acid) and polyphenols (Scalzo and others
2007).
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The essential oil of B. rapa var. perviridis leaves was
found to contain 48 volatile components, representing 94%
to 96.6% of the oil. The main constituents were found to be
3-butenylisothiocyanate (1.4% to 29.2%), 4-pentenyl isothio-
cyanate (8.2% to 23.5%), 2-methyl 5-hexenenitrile (1.3% to
16.8%), 2-phenylethyl isothiocyanate (7% to 13.7%), and phy-
tol (6.1% to 23.5%) (Miyazawa and others 2005). Volatile
chemicals emitted by rapeseed oil also contain monoterpenes
(limonene, sabinene, β-myrcene, and cis-3-hexen-1-ol acetate),
sesquiterpenes, short-chain aldehydes and ketones, other green
leaf volatiles, and organic sulfides including the respiratory ir-
ritant, dimethyl disulfide (McEwan and Smith 1998). The emis-
sion of volatiles from cabbage consisted mainly of monoterpenes
(sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene,
α-pinene, and γ -terpinene). (Z)-3-Hexenyl acetate, sesquiterpene
(E, E)-α-farnesene, and homoterpene (E)-4, 8-dimethyl-1, 3, 7-
nonatriene were emitted mainly from herbivore-damaged plants
(Vuorinen and others 2004).

In Brassica oils, triacylglycerols are the main constituents mak-
ing up about 98% of the oils. The remaining nonglyceridic
fraction consists of different lipophylic phytochemicals such as
tocopherols, sterols, and sterol esters (Lechner and others 1999).
Similarly, in Brassica oils the remaining 2% consists of sterols,
phospholipids, and sphingolipids. The major sterols were iden-
tified as stigmasterol (Appelqvist and others 1981), sitosterol,
campesterol, and cholesterol (Lechner and others 1999), the
phospholipids as phosphatidylethanolamine and phosphatidyl-
choline, and the sphingolipids as cerebrosides (Hobbs and others
1996).

For the purposes of human nutrition, a high ingestion of oleic
acid and a 2:1 ratio of linoleic:linolenic acid are advantageous
(Adamska and others 2004). All polyunsaturated fatty acids in-
cluding both linoleic and linolenic acids are essential to the hu-
man diet because they cannot be synthesized by humans (Ayaz
and others 2006). However, the type of fatty acids in the dietary
fat is very important, being considered, for example, as one of the
detrimental factors in colon cancer development. Fats contain-
ing omega-6-polyunsaturated fatty acids were found to enhance
chemically induced colon cancer (Dwivedi and others 2003),
while omega-3-polyunsaturated fatty acids reduce it (Ferguson
1999; Dwivedi and others 2003). Consumption of diet rich with
canola fat may also alter the fatty acid composition of lipids of adi-
pose tissue, muscle, kidney, and liver (Rule and others 1994). A
diet high in trans-α-linolenic acid may increase plasma LDL/HDL
cholesterol and total cholesterol/HDL-cholesterol ratios. Careful
deodorization prevents the formation of trans-α-linolenic acid
and may help to improve the diet (Vermunt and others 2001).

Carbohydrates
The type and concentration of free sugars influence the flavor

of Brassica products (Rosa and others 2001). Fructose, glucose,
and sucrose are the major soluble sugars found in Brassica (King
and Morris 1994). A comprehensive evaluation of the nutritive
profiles of Brassica seed meals of yellow-seeded types (B. napus,
B. rapa, B. juncea, and B. carinata) and conventional brown-
seeded (canola) type showed that all contain sucrose (7.5% to
8.7%), oligosaccharides (2.3% to 2.5%), ash (6.9% to 7%), and
nonstarch polysaccharides (20.4% to 19.7%) (Simbaya and oth-
ers 1995). Fructose is the major sugar in the different types of
Brassica, representing between 48.8% and 56.9% of the total
sugar content in broccoli cvs. Marathon and Senshi, respectively,
48.7% (cv. Mirandela) and 53.8% (cv. Murciana) in the other cab-
bages. Glucose is the 2nd major sugar, while sucrose represents
a maximum of 20.5% in broccoli cv. Shogun and 11.1% in cv.
Murciana (Rosa and others 2001).

Dietary fiber
It is composed of nonstarch polysaccharides (Knudsen 2001)

and is an important constituent in Brassicaceae vegetables, con-
tributing to prevention of colon cancer (Rodriguez and others
2006). In white cabbage (B. oleracea var. capitata) dietary fiber
represents one-third of the total carbohydrate content, the other
two-third being low-molecular-weight carbohydrates, including
glucose (37%), uronic acid (32%), arabinose (12%), and galac-
tose (8%) (Wennberg and others 2002, 2006). The dietary fiber
content of 6 cultivars of white cabbage (B. oleracea var. cap-
itata) was evaluated finding that of the average total dietary
fiber of 241 mg/g of dry matter, approximately 25% was solu-
ble (Wennberg and others 2002). Dietary fiber content of other
species was found to vary between 271 and 352 mg/g for the
yellow-seeded B. napus and brown-seeded B. napus, respectively
(Slominski and others 1999), with intermediate values in other
species, such as cauliflower (302 mg/g DW), broccoli (330 mg/g
DW), and cabbage (226 mg/g DW) (Puupponen-Pimia and others
2003).

Protein and Free Amino Acids
The defatted meal of Brassica oilseeds is a valuable source of

protein for the livestock feed industry (Jensen and others 1996)
and may constitute an important protein source for human nutri-
tion thereby increasing the value of Brassica crops. However, the
high temperatures and organic solvents used during the oil ex-
traction process cause denaturation of proteins in Brassica meal
(Pedroche and others 2004). Protein and free amino acid content
in rapeseed meal has a high nutritive value, but the utilization
of rapeseed/canola as a source of food-grade proteins for human
consumption is still limited due to the presence of antinutrients
such as glucosinolates, phytates, and phenolics (Mahajan and
Dua 1997; Rozan and others 1997; Naczk and others 1998).
Therefore, it is used only for animal feeding (Berot and others
2005). There is a variation in protein content in different groups
of Brassica, and B. napus seeds have higher protein solubilities
than meals from B. rapa seeds. Meals with higher protein solubil-
ity values also have higher foaming capacity values (Aluko and
McIntosh 2001). Seeds of rape, B. napus, and related cruciferous
oilseed crops, such as B. campestris, B. juncea, B. carinata, and
B. nigra are rich sources of edible protein and rapeseed/canola
meal, the by-product of the oil-extraction process, contains up to
42.7% to 50% protein (Simbaya and others 1995; Ghodsvali and
others 2005).

The rapeseed (B. napus) meal contains napin and cruciferin
as storage proteins and oleosin as a structural protein associated
with oil bodies (Berot and others 2005; Ghodsvali and others
2005). The 2S albumins or napins in oilseed rape and turnip rape
are potential food allergens (Puumalainen and others 2006). Free
amino acids are involved in secondary plant metabolism and
in the production of compounds that directly or indirectly play
an important role in plant–environment interactions and human
health. A total of 17 amino acids were identified (L-alanine, L-
arginine, L-asparagine, L-aspartic acid, glycine, L-glutamic acid,
L-glutamine, L-histidine, L-isoleucine, L-leucine, L-methionine,
L-phenylalanine, L-serine, L-threonine, L-tryptophan, L-tyrosine,
and L-valine) in B. oleracea var. italica (Gomes and Rosa 2000;
Ayaz and others 2006). S-methylcysteine sulfoxide, a naturally
occurring S-containing amino acid, is contained at high concen-
trations in Brassica vegetables such as broccoli and cabbage. Its
cholesterol-lowering effects have been demonstrated in animals,
observing a significant decrease of the serum level of LDL-C (14%
decrease) following the oral administration of broccoli (B. oler-
acea L. var. botrytis L.) and cabbage (B. oleracea L. var. capitata
L.) (Suido and others 2002).
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Figure 2 --- Structures of cruciferous phytoalexins: 1: brassinin, 2: brassitin, 3: 1-methoxybrassinin, 4: 4-
methoxybrassinin, 5: 1-methoxybrassitin, 6: 1-methoxybrassenin A, 7: 1-methoxybrassenin B, 8: cyclobrassinin,
9: cyclobrassinin sulfoxide, 10: cyclobrassinone, 11: dehydro-4-methoxycyclobrassinin, 12: spirobrassinin, 13: 1-
methoxyspirobrassinin, 14: 1-methoxyspirobrassinol, 15: 1-methoxyspirobrassinol methyl ether, 16: dioxibrassinin,
17: methyl 1-methoxyinodole-3-carboxylate, 18: brassilexin, 19: sinalexin, 20: brassicanal A, 21: brassicanal B, 22:
brassicanal C, 23: camalexin, 24: 6-methoxycamalexin, 25: 1-methylcamalexin (Pedras and others 2000).

Indoles
Plants may respond to pathogen attack by producing phytoalex-

ins (Morrissey and Osbourn 1999). Phytoalexins are a group of
structurally diverse molecules (Grayer and Harborne 1994; Smith
1996) that are generally nonspecific in their antimicrobial activ-
ities (Smith 1996; Rogers and others 1996). A number of phy-
toalexins have been isolated from crucifers (Figure 2) (Pedras and
others 2000).

In Brassica indole phytoalexin (camalexin) synthesis is induced
as a response to pathogen attack and ROS generating abiotic
elicitors (Reuber and others 1998; Roetschi and others 2001).
These phytoalexins inhibit the growth of human cancer cells
and thus may have a potential use as chemopreventive agents
(Samaila and others 2004). Several indole phytoalexins found
in Brassica vegetables, brassinin, spirobrassinin, brassilexin, ca-
malexin, 1-methoxyspirobrassinin, 1-methoxyspirobrassinol, and
methoxyspirobrassinol methyl ether, have been found to possess
significant antiproliferative activity against various cancer cells,
while others, such as cyclobrassinin, spirobrassinin, and brassinin
also exhibited chemopreventive activity in models of mammary
and skin carcinogenesis (Mezencey and others 2003).

Brassicaceae species contain a range of signaling and regula-
tory compounds known to be involved in general defense mech-
anisms activated by pathogen and herbivore attacks on plants
(Kaplan and others 2004). These include salicylic acid, ethylene,
H2O2, and jasmonic acid (an acid-derived oxylipin) (Kurilich and
others 1999) and signal peptides, such as systemin (Ryan and
others 2002; Ryan and Pearce 2003; Halitschke and Baldwin

2005). Some of these are bioactive compounds that exhibited
anticancer activity in animals when added to experimental di-
ets (Kurilich and others 1999). In particular, jasmonic acid and
its derivatives, which represent the best characterized class of
signal compounds, mediating the defense responses to wound-
ing and herbivore attack in Brassicaceae (Creelman and Mullet
1997; Beale and Ward 1998; Blee 1998; Devoto and Turner 2003;
Farmer and others 2003), have been proved to inhibit the prolifer-
ation of human prostate cancer cells, while not affecting normal
human blood cells (Samaila and others 2004; Flescher 2005).

Phenylpropanoids, Flavonoids, and Tannins
Flavonoids, hydroxycinnamic acids, phenylpropanoids, and

other minor compounds (Table 3) are considered to be among
the health promoting compounds in Brassicacae species (Pascale
and others 2007). Plant polyphenols are multifunctional, having
diverse biological activities apart from acting as reducing agents
(Rice-Evans and others 1996). Phenolics also contribute to the
bitter, astringent, and unpleasant flavor of rapeseed, though the
threshold of this unpleasant flavor is higher for individual pheno-
lic compounds than for the mixture (Naczk and others 1998). In
spite of this, they are considered to be beneficial and harmless
components of rapeseed meal.

The contribution of Brassica vegetables to health improvement
has generally been associated with their antioxidant capacity and,
undoubtedly, phenolic compounds are the major antioxidants
of Brassica vegetables (Ninfali and Bacchiocca 2003; Podsedek
2005; Singh and others 2006). Phenolics is a generic term that
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Table 3 --- Variation of phenolics (μg/g) among different Brassicaceae vegetables on fresh weight basis.

Quercetin Kaempferol Apigenin Lutein

Brassica oleracea L. var. Italica (Broccoli) 137a 46a – 6.8c

Brassica oleracea L. var. botrytis L. (Cauliflower) 39a 12a 2a 1.3c

Brassica campestris var. Chinensis (Chinese cabbage) 390a 96a 45a 0.2c

Brassica rapa L. Subsp. Sylvestris 102b 334b – –
Brassica oleracea var. capitata (white cabbage) 51a – 8a 1.4c

aBahorun and others 2004.
bPascale and others 2007.
cSingh and others 2007.

refers to a large number of compounds that can be classified
in groups, namely, phenolic acids, flavonoids, isoflavonoids, lig-
nans, stilbenes, and complex phenolic polymers (Dewick 2001).
As mentioned previously, these antioxidants have proved to be
good for human health and also useful as food preservatives
(Kroon and Williamson 1999). Mustard seeds have a chemopre-
ventive potential and enhance the antioxidant defence system.
Their inclusion in the diet may very probably contribute to re-
ducing the risk of cancer incidence in the human population
(Gagandeep and others 2005). A rapeseed phenolic extract has
shown a stronger antioxidant activity than many artificial antiox-
idants (Wanasundara and Shahidi 1994) and exhibited a greater
efficiency on a mole-to-mole basis than natural antioxidants such
as vitamin C, vitamin E, and β-carotene (Rice-Evans and others
1996).

Species of the Brassicaceae family are generally rich in
polyphenols. B. rapa (Naczk and others 1998) and B. oler-
acea L. var. botrytis contain a high amount of phenolic com-
pounds (Llorach and others 2003). Phenolic contents of several
species have been reported, such as Chinese cabbage (1189 ±
125 μg/g), broccoli (822 ± 89 μg/g), cauliflower (278 ±
15 μg/g), and white cabbage (153 ± 21 μg/g) on a fresh weight
basis (Wanasundara and Shahidi 1994; Bahorun and others
2004). In the case of broccoli, hydroxycinnamic acids such as
ferulic, sinapic, caffeic, and protocatechuic acids were reported
to be the most abundant and important bioactive compounds
(Robbers and others 1996; Robbins and others 2005). Four hy-
droxycinnamic acids (caffeic, p-coumaric, ferulic, and sinapic
acid) were identified in the water-soluble phenolic fraction of the
leaves of oilseed rape (Brassica napus L. var. oleifera) (Solecka
and others 1999) and gallic, protocatechuic, p-hydroxybenzoic,
vanillic, syringic, salicylic, p-cumaric, caffeic, ferulic, and sinapic
acid were identified in kale (B. oleraceae L. var. acephala DC.)
(Ayaz and others 2008). The main phenolics in rapeseed meal
were determined to be sinapine, which constitutes over 73% of
its free phenolic acid content and sinapic acid (Thiyam and oth-
ers 2004), while rapeseed oil contains vinylsyringol apart from
sinapine and sinapic acid (Vuorela and others 2003, 2005). An
efficient peroxynitrite scavenger activity has been described for
sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid), which has
shown to contribute to the cellular defence against this power-
ful cytotoxic free radical, thus avoiding peroxynitrite-mediated
disorders (Zou and others 2002). Besides the typical seed con-
stituent sinapine, large amounts of choline esters of other phe-
nolic acids have been detected in Brassicaceae species, for
example, feruloyl- and isoferuloylcholine and hydroxyben-
zoic acid (Regenbrechta and Strack 1985). Brassicaceae
plants accumulate glucose esters (1,6-di-O-sinapoylglucose),
gentiobiose esters (1-O-caffeoylgentiobiose and 1,2,60-tri-O-
sinapoylgentiobiose) of phenolic acids, and kaempferol conju-
gates (Alfred and others 2005).

Flavonoids are one of the most common and widely distributed
groups of plant phenolics. Over 5000 different flavonoids have

been described to date and they are classified into at least 10
chemical groups. Among them, flavones, flavonols, flavanols, fla-
vanones, anthocyanins, and isoflavones are particularly common
in the human diet (Berlin 1997). As these compounds have in-
teresting biological activities, these are being used in numerous
medical treatments (Caporale 1995; Morton and others 2000)
connected to cancer-prevention (Chu and others 2000, Birt and
others 2001) and cardiovascular system protection, including in-
hibition of oxidative damage (Omenn 1995; Williams and others
2004). At higher doses, however, flavonoids may act as muta-
gens, pro-oxidants that generate free radicals, and as inhibitors
of key enzymes involved in hormone metabolism (Skibola and
Smith 2000).

Flavones are involved in various interactions with other organ-
isms, microbes as well as insects and other plants (Siqueira and
others 1991). Pharmacological activities have been described
for various flavonoids (for example, quercetin, apigenin, cate-
chins), which have shown an anti-inflammatory action by in-
hibiting cycloxygenase-2 and inducible nitric oxide synthase
(Marchand 2002). The flavonols quercetin, kaempferol, and
isorhamnetin are among the flavonoid derivatives present in Bras-
sica species (Nielsen and others 1998; Vallejo and others 2002;
Onyilagha and others 2003; Chun and others 2004). Two main
flavonol glycosides, quercetin 3-O-sophoroside and kaempferol
3-O-sophoroside, are present in broccoli florets. Three minor glu-
cosides of quercetin and kaempferol, isoquercitrin, kaempferol
3-O-glucoside, and kaempferol diglucoside, have also been de-
tected. The quercetin and kaempferol glycosides were present
in florets at a level of 43 and 94 μg/g DW, respectively
(Price and others 1998). Glycosylated kaempferol derivatives
from the external leaves of tronchuda cabbage (B. oleracea
L. var. costata DC) have been reported by Ferreres and oth-
ers (2005). Total flavonoid content in Chinese cabbage, broc-
coli, cauliflower, and white cabbage is 944, 316, 172, and
102 μg/g, on a fresh weight basis, respectively (Bahorun and
others 2004). Onyilagha and others (2003) reported the ac-
cumulation of derivatives of flavonols such as quercetin in
Camelina sativa; quercetin and kaempferol in Crambe hispanica
var. glabrata; quercetin, kaempferol, and isorhamnetin in Bras-
sica napus; kaempferol and isorhamnetin in Sinapis alba. The
constitutive flavonoids of B. napus, isorhamnetin-3-sophoroside-
7-glucoside and kaempferol-3,7-diglucoside, are effective deter-
rents of armyworm (Onyilagha and others 2004). Analysis of B.
alba extracts revealed the presence of 3,5,6,7,8-pentahydroxy-
4-methoxy flavone in shoots, as well as 2,3,4,5,6-pentahydroxy
chalcone and 3,5,6,7,8-pentahydroxy flavone in roots and root
exudates. Apigenin was also found in the shoots and roots (Ponce
and others 2004).

Anthocyanins are potent antioxidants and consequently may
be chemoprotective (Giusti and Wrolstad 2003). Brassicacae
provide a variety of anthocyanins. Cauliflower and red cab-
bage showed differences in their anthocyanin profiles: cyanidin-
3,5-diglucoside was absent in cauliflower, while it was well
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represented in red cabbage, together with the characteris-
tic anthocyanin of Brassica genus, cyanidin-3-sophoroside-
5-glucoside. The p-coumaryl and feruloyl esterified forms
of cyanidin-3-sophoroside-5-glucoside were predominant in
cauliflower, while the sinapyl ester was mostly present in red
cabbage (Scalzo and others 2008). Red pigmentation of red cab-
bage is caused by anthocyanins. Red cabbage contains more than
15 different anthocyanins, which are acylglycosides of cyanidin
(Dyrby and others 2001). Red radish (Raphanus sativus L.) con-
tains significant amounts of anthocyanins of which 12 acylated
anthocyanins were isolated and analyzed spectroscopically to
determine their structure. Six of these were identified as antho-
cyanin glycosides with 1 or 2 hydroxycinnamic acids (Otsuki
and others 2002). Total proanthocyanidins content in brocolli
was found to be 12 and 7 μg/g in cauliflower, calculated over
fresh weight (Bahorun and others 2004).

Five lignans, 5 neolignans, 2 sesquilignans, and 1 dilignan were
identified in a phytotoxic extract of Brassica fruticulosa (Cultillo
and others 2003). These compounds exhibited interesting antimi-
crobial, antifungal, and/or herbicidal activities that are believed
to participate in plant defense mechanisms (Erdemoglu and oth-
ers 2004). These compounds also have cancer-preventive effects
(Hanf and Gonder 2005).

Tannins have an adverse effect on the nutritive value of rape-
seed meal proteins or isolated proteins (Durkee 1971). These
compounds suppress the availability of essential amino acids
(Sadeghi and others 2006) and may form complexes with essen-
tial minerals, proteins, and carbohydrates (Shahidi 1995). Tan-
nins have also a profound inhibitory effect on the digestion of
carbohydrates and proteins in particular (McSweeney and others
2005). In Brassicaceae vegetables, different amounts of tannins
have been reported (Heimler and others 2005). Inositol hexa-
phosphate (phytic acid) and condensed tannins are reported in
B. carinata (Matthaus and Angelini 2005), both of which play an
important role in iron binding (Shahidi 1995). Cabbage and turnip
contain various amounts of phytic acid, tannic acid, and/or oxalic
acid. Tannic acid was found at 12.66 mg/g (fresh weight basis) in
cabbage. Levels of both tannic acid and phytic acid can be signifi-
cantly (P < 0.05) reduced by different blanching methods (Mosha
and others 1995). The total amount of tannins in rapeseed/canola
hulls ranged from 19.13 to 62.13 mg/g of oil-free hulls. Insoluble
tannins predominated in canola/rapeseed hulls and comprised
70% to 95.8% of total tannins present. The amounts of sodium-
dodecyl-sulphate-extractable tannins were comparable to those
of soluble tannins but constituted only 4.7% to 14.1% of insolu-
ble tannins present (Naczk and others 2000).

Glucosinolates
Sulfur-containing phytochemicals of 2 different types are

present in Brassica (Cruciferae) vegetables (cabbage, broccoli,
and so on): glucosinolates and S-methyl cysteine sulfoxide. Glu-
cosinolates (Figure 3) are thioglucosides containing a cyano
group and a sulfate group (Zrybko and others 1997).

Glucosinolates are derived from amino acid biosynthesis
(Figure 1) and are important secondary metabolites in Bras-
sicaceae family, involved in plant defense against pests and
diseases (Zrybko and others 1997). For example, glucoiberin,
glucoraphanin, glucoalyssin, gluconapin, glucobrassicanapin,
glucobrassicin, gluconasturtiin, and neoglucobrassicin are
health-promoting compounds found in broccoli inflorescences
(B. oleracea L., var. italica, cv. Marathon) (Vallejo and others
2004). These compounds have both positive and negative nutri-
tional effects (Mithen 2001), appearing to posess anticarcino-
genic properties, but also quite different toxicological effects
(Stoewsand 1995). The effects of specific glucosinolate degra-
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Figure 3 --- Basic structure of glucosinolates.

dation products on individual organisms vary and are not always
known. If used in excessive quantity, many of these compounds
can be highly toxic (Brown and Morra 2005).

Glucosinolates and their concentrations vary among the differ-
ent groups of Brassicaceae (Table 4) (Windsor and others 2005).
In Brussels sprouts, cabbage, cauliflower, and kale, the predomi-
nant glucosinolates were found to be sinigrin and glucobrassicin.
Brussels sprouts also had significant amounts of gluconapin
(Kushad and others 1999). The predominant glucosinolates in
broccoli are 4-methylsulfinylbutyl glucosinolate (glucoraphanin)
(Iori and others 2004), 3-butenyl glucosinolate (gluconapin),
and 3-indolylmethyl glucosinolate (glucobrassicin) (Kushad and
others 1999). Cruciferous vegetables of the Brassica genus (for
example, Brussels sprouts, cauliflower, and broccoli) contain
high levels of an indolylmethyl glucosinolate commonly known
as glucobrassicin (Rose and others 2005). A great number of
glucosinolates have been identified in B. oleracea var. capi-
tata f. alba, namely glucoiberin, progoitrin, epiprogoitrin, sin-
igrin, glucrafanin, gluconapoleiferin, glucoalisin, gluconapin,
4-hydroxybrassicin, glucobrassicanapin, glucobrassicin, glu-
conasturein, methoxyglucobrassicin, and neoglucobrassicin
(Kusznierewicz and others 2008). The major glucosinolates de-
tected in different varieties of B. oleracea were 2-propenyl, 3-
methyl-sulphinylpropyl, and indol-3-yl-methyl, which accounted
for an average of 35%, 25%, and 29%, respectively of the total
glucosinolate content, while in B. rapa, but-3-enyl represented
86% of the total, with pent-4-enyl and 2-phenylethyl as the other
major glucosinolates. The average total glucosinolate content of
the flower buds was determined to be 2518 μmol/100 g DW in
troncha (B. oleracea var. tronchuda) and 4979 μmol/100 g DW
in nabo (B. rapa), which is much higher than the highest amounts
reported for broccoli (B. oleracea var. italica) (Rosa 1997). As
in other Brassicaceae seeds and plants, rapeseed contains up to
5% of glucosinolates, which are partially decomposed during
rapeseed processing or storage. When plant material is crushed,
as in food preparation or chewing, a thioglucosidase-mediated
autolytic process is initiated, generating indole-3-carbinol, glu-
cose, and thiocyanate (Bradfield and Bjeldanes 1991). These,
together with other important degradation products, such as
isothiocyanates, vinyl-oxazolidinethione, and nitriles, contam-
inate the crude rapeseed oils, impairing their hydrogenation
and transesterification and ultimately may be harmful to human
consumption (Velisek and others 1990). The main glucosino-
late breakdown products of Brassica vegetables are the sinigrin
breakdown product 1-cyano-2,3-epithiopropane, the gluconapin
hydrolysis product 3-butenyl isothiocyanate, the glucobrassicin
metabolite ascorbigen, and low concentrations of other indole
glucosinolate-derived hydrolysis products such as neoascorbigen
and 3,3‘-diindolylmethane (Smith and others 2005).

Rapeseed meal, a by-product of rapeseed oil production,
also contains glucosinolates, which together with phytic acid
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Table 4 --- Variation of glucosinolate contents (μg/g) among different Brassicaceae vegetables on dry weight basis.A

Cabbage Broccoli Brussels sprouts Cauliflower Kale

Glucoiberin 2289 ± 380a 697 ± 127a 42 ± 84c – 3455 ± 591d

Glucoraphanin 17a 3208 ± 528a 3099c 218 ± 131c 1361b

Progoitrin 452 ± 20a 1017 ± 68a 2922c 120 ± 40c 524b

Gluconapin 472 ± 26a 96 ± 37a 4654c 111 ± 74c 372 ± 37c

Sinigrin 3443 ± 939a 35 ± 143c 3261c 3332 ± 36c 3400 ± 322d

Glucoalysin – 90 ± 45c 90 ± 45c – –
Glucoerucin – – – – 1206b

Glucobrassicin 1315 ± 13a 1566 ± 130a 1431 ± 89c 715 ± 716c 353 ± 1029c

Neoglucobrassicin 38 ± 19a 458 ± 29a 95 ± 48c 95 ± 95c 353d

4-Methoxygluco-brassicin 214 ± 24a 124 ± 5a – – –
ACalculation is made by conversion of μmol to μg on dry weight basis.
aVerkerk and others 2001.
bKushad and others 2004.
cKushad and others 1999.
dCartea and others 2008.

contributes to its anti-nutritional properties (Fenwick and Heaney
1983; Tripathi and Mishra 2007). Goitrin, a naturally occurring
compound in cruciferous vegetables, can easily be nitrosated if
in contact with nitrites in gastrointestinal conditions, yielding the
mutagenic compound N-nitroso-oxazolidone, with loss of sulfur
(Luthy and others 1984). Additionally, goitrin, which is a decom-
position product of progoitrin (Figure 4), is known to be strongly
goitrogenic, inhibiting the synthesis of thyroid hormones, thyrox-
ine, and tri-iodine-thyronine by a selective binding of iodine that
prevents iodine intake by the thyroid gland (Zukalova and Vasak
2002).

The other decomposion products of glucosinolates, as
mentioned previously, are thiocyanates, isothiocyanates, and
oxazolidine-2-thiones (Figure 5) (Heaney and Fenwick 1995;
Wittstock and Halkier 2002), and have also been shown to be
goitrogenic. The benzyl-, phenethy-, allyl-isothiocyanate, and
sulforaphane are formed through the hydrolysis of their naturally
occurring precursor glucosinolates, glucotropaelin, gluconastur-
tiin, sinigrin, and glucoraphanin, respectively, by myrosinase
(Smith and Yang 2000). However, under certain conditions, the
glucosinolate aglycones may yield a nitrile rather than an isoth-
iocyanate. Nitriles such as S-l-cyano-2-hydroxy-3-butene and
1-cyano-2-hydroxy-3,4-epithiobutane are the most toxic of the
normal glucosinolate hydrolysis products, with a human lethal
dose of 170 and 178 mg/kg, respectively (Fenwick and Heaney
1983). These negative effects of glucosinolates have led to re-
search directed at finding methods to reduce the glucosinolate
content in the seeds of some Brassica crops (Font and others
2005). Other processes intended to avoid toxicity of the meal in-
clude heat treatment of the seeds prior to removal of the oil. This
inactivates myrosinase and subsequent breakdown of glucosino-
lates when the meal is consumed (Fenwick and Heaney 1983).
High or low glucosinolate contents of the seed of some varieties
of B. napus correlate positively with glucosinolate levels in the
roots, at least during the early stages of in vitro plant development
(O’Callaghan and others 2000).
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Figure 4 --- Conversion of progoitrin to
goitrin by myrosinase.

Glucosinolates are also responsible for the bitter acidic fla-
vors of Brassicacea species (Kopsell and others 2003) and the
hydrolysis by-products of glucosinolates mentioned previously,
such as isothiocyanates, nitriles, and thiocyanates, are respon-
sible for the hot and pungent taste of the mustard that is often
objected to by consumers (Zrybko and others 1997). Many of
these degradation products are volatile (Valette and others 2006)
and also play an important role in the characteristic aroma or
off-odor of Brassicacae (Miyazawa and others 2005). A great
deal of research has been carried out on the volatiles of these
species. Cruciferous vegetables, for example, have been reported
to contain substantial quantities of isothiocyanates (Kawanishi
and others 2005). Volatiles and semi-volatiles from B. oler-
acea L. var. botrytis (L.) seeds were identified as cyanides such
as 4-(methylthio) butyl-cyanide, 3-(methylthio) propyl cyanide,
and isothiocyanates such as 4-(methylthio) butyl-isothiocyanate
(Valette and others 2003). In B. rapa L. var. perviridis, 6 isothio-
cyanates were detected in the steam volatiles and identified as
sec-butylisothiocyanate, 3-butenylisothiocyanate, 4-pentenyliso-
thiocyanate, benzyl-isothiocyanate, 2-phenylethylisothiocyana-
te, and 5-methylthiopentylisothiocyanate. Three nitriles were
also detected and identified as 2-methyl-5-hexenenitrile, 3-phen-
ylpropiononitrile, and 6-methylthiohexanonitrile (Miyazawa and
others 2005). In Brassica oleracea L. var. Botrytis L. 35 volatile
and semi-volatile constituents were detected (Valette and oth-
ers 2003). Dimethyl sulfide, dimethyl disulfide, dimethyl trisul-
fide, hexanal, 3-cis-hexen-1-ol, nonanal, ethanol (Valette and
others 2003; Jacobsson and others 2004), and hex-3(Z)-enol
were identified as major constituents representing, respectively,
30.2%, 24.2%, and 21.7% of the volatiles (Valette and others
2003).

Various interesting bioactivities have also been reported for hy-
drolysis and breakdown products of glucosinolates (O’Callaghan
and others 2000; Griffiths and others 2001), such as strong
bactericidal, antifungal properties (Fenwick and Heaney 1983;
Rosa and others 1997; Tierens and others 2001), and health
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promoting effects for plants and humans (Wittstock and Halkier
2002; Font and others 2005). Some of these glucosinolates
have a potential application in the industry; for example, an
aqueous extract of B. nigra seeds might be included in indus-
trial biofilms as an antimicrobial agent (Saraviaa and Gaylardeb
1998). The breakdown products of glucosinolates assist in the
activity of important naturally occurring, direct- acting antiox-
idants such as tocopherols and also enhance the synthesis of
glutathione, one of the most abundant intracellular direct an-
tioxidants (Hogge and others 1988; Fahey and Talalay 1999).
Working on rapeseed oil cake (Brassica campestris L. subsp. na-
pus), Nagatsu and others (2004) isolated different antioxidant
compounds (indolacetonitrile, S-1-methoxy-1-(3,5-dimethoxy-
4-hydroxyphenyl) ethane, 4-hydroxy-indol-acetonitrile, and 4-
hydroxy-phenyl-acetonitrile), which showed a strong antioxidant
activity as evaluated by the ferric thiocyanate method.

Certain glucosinolates, particularly the isothiocyanates and ni-
triles, have been shown to modify both xenobiotic metabolizing
enzymes and induce cell cycle arrest and apoptosis. It is likely that
a combination of these responses explains the chemo-preventive
characteristics of Brassica and that a combination of different
cruciferous vegetables could provide optimal protection (Smith
and Yang 2000; Lund 2003). The isothiocyanate chemopreven-
tive activity could be due to its powerful inhibition of different
enzymes such as glutathione S-transferases (GSTs) in humans
(Seow and others 2002; Ambrosone and others 2004). Another
potential cancer-blocking action, which was described for both
intact and thioglucoside glucohydrolase-treated glucosinolates,
as assessed by induction of GSTs activity, was found to be depen-
dent on the nature of the side chain of the parent glucosinolate
(Tawfiq and others 1995). Another naturally occurring isothio-
cyanate, sulforaphane, that is present in Brassica vegetables has
been shown to block the formation of tumors (Liang and others
2005) and together with 7-methylsulfinylheptyl isothiocyanates in
broccoli (B. oleracea var. italica) extract exhibited an inhibitory

effect on 12-O-tetradecanoylphorbol-13-acetate-induced cancer
cell invasion and matrix metalloproteinase-9 activity in human
breast cancer cells (Rose and others 2005) and lowers the prob-
ability of acquiring colon and rextal cancers (Branca and others
2002). It was also proved to inhibit Helicobacter pylori infection,
blocking gastric tumor formation. This suggests that broccoli con-
sumption could prevent chronic atrophic gastritis induced by H.
pylori infection and, thus, this type of stomach cancer (Sato and
others 2004). Naturally, the wide range of glucosinolate content
among different groups of B. oleracea would result in signifi-
cant differences in their health-promoting properties (Kushad and
others 1999).

Indole-3-carbinol (I-3-C) is another glucosinolate breakdown
product found in vegetables of the Brassica genus (cabbage,
broccoli sprouts, Brussels sprouts, cauliflower, bok choy, and
kale). Some research points to this compound as a promising
anticancer agent against prostate cancer and reducing the in-
cidence and multiplicity of mammary tumors (Hsu and others
2005; Rahman and Sarkar 2005). Coinciding with these stud-
ies, oral administration of I-3-C has been shown to have a
possible beneficial effect on estrogen metabolism in humans
andepidemiological studies support the claim that high intakes
of I-3-C may have a broad chemo-preventive effect (Brignall
2001). Conversely, 5,6,11,12,17,18-hexahydrocyclonona[1,2-
b:4,5-b:7,8-b] triindole (CTr), a major digestive product of indole-
3-carbinol, has been proved to exhibit strong estrogenic activities
increasing proliferation of estrogen-dependent breast tumor cells.
Thus, the contribution of CTr to the cancer preventive or cancer-
promoting effects of I-3-C remains to be established (Xue and
others 2005). In plants, levels of secondary metabolites, such as
glucosinolates are controlled by a number of factors. Although
it is possible to increase levels of glucosinolates in plants by
genetic manipulation, to enhance a particular pharmacological
benefit, such a step would be premature and must await a more
thorough understanding of the extremely complex interactions
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of these compounds and their metabolites (Heaney and Fenwick
1995).

Future Prospects
Many anti-cancer agents are of plant origin, but their actual

function or the mechanism behind the role they play in the plant
has not yet been fully elucidated. For example, plant-derived
molecules with known roles in plant cell death may be novel
candidates for use in clinical oncology, but a better understand-
ing of the molecular and cellular mechanism of action of such
compounds and their structure–activity relationships is necessary
for the development of new derivatives of these molecules with
more favorable chemopreventive activities. Different classes of
anti-cancer compounds merit continued research at a basic and
pharmacological level to yield novel chemotherapeutic agents.
However, to correctly evaluate the effect of such compounds in
food, it is necessary to bear in mind that some constituents such
as phenolic acids, tannins, and other anti-nutritional compounds
may form complexes with nutritionally important compounds,
reducing their bioavailability and thus lowering the nutritional
value of Brassica products. Additonal studies are needed to de-
termine the amount of isothiocynates or their metabolites that
reach target tissues, and the concentration needed to exert bio-
logical effects (Smith and Yang 2000). Further elucidation of the
protective mechanisms of food and the identification of active
constituents is needed.

Enhancing the phytonutrient content of plant foods through
selective breeding or genetic improvement is a powerful tool for
dietary disease prevention. However, most, if not all, of these
bioactive compounds confer a bitter, acid, or astringent taste to
the food, which is rejected by most consumers. Moreover, in the
past, some of these compounds have even viewed as plant-based
toxins and, as a result, the food industry routinely removes these
compounds from plant foods through selective breeding and a
variety of debittering processes. This poses a dilemma for the
designers of functional foods because increasing the content of
bitter phytonutrients for health may clash with consumer choices.
Studies on phytonutrients and health, taking sensory factors and
food preferences into account, constitute an important area of
research.

Another aspect of these valuable Brassica vegetables that de-
serves full attention is the edaphic conditions in which they are
grown. These plants can be biofortified by growing them in a
high mineral-containing medium, attaining high levels of nutri-
tionally important minerals that can be used to produce dietary
supplements. But this advantage, which is due to their metal tol-
erance (and allows their use for phytoremediation as previously
explained), can be negative as observed in crops that are irri-
gated with polluting metals. The excessive heavy metals (macro
or micro nutrients in excess) and plant and human pathogenic
microbes concentrated in the soil from this water cause stress con-
ditions for plants. Quality parameters of Brassicacea vegetables
are very susceptible to great changes with these stress conditions
that produce different effects on the levels of Brassica vegetables
metabolites, affecting their flavor and leading to the changes in
nutritional value. Studies are needed to clarify the route of ex-
posure, mechanisms of sensitization, and clinical importance of
these phenomenons.

Another question about cruciferous vegetables is their
flavonoid content. Epidemiological data indicate that the present
rate of consumption of these vegetables is beneficial. However,
earlier studies also raised the question of the advantages of recom-
mending an increased consumption of Brassica vegetables and/or
phytochemical supplements. One of the reasons for this lies in
the flavonoid content of these vegetables, which, as explained

previously, is quite high in some of the species. Unfortunately,
the potentially toxic effects of excessive flavonoid intake are still
largely ignored. It is known that at high doses, flavonoids may
act as mutagens, that is, pro-oxidants that generate free radicals,
so that their adverse effects may well outweigh their beneficial
ones. It is imperative that further research be conducted to learn
more about the toxicological properties of flavonoids, apart from
other putative health promoting compounds in Brassica vegeta-
bles, thus clarifying the balance of potential adverse and benefi-
cial effects included in their mechanisms of action.

Conclusions
Brassica vegetables represent a major part of the human diet

all over the world providing nutritionally significant constituents,
such as phenolic compounds, vitamins, fiber, soluble sugars, min-
erals, fat, and carotenoids. Cruciferous vegetables are a source
of some very promising chemopreventive dietary constituents,
which may protect against free radical damage and LDL oxida-
tion implicated in the pathogenesis of cardiovascular diseases, as
well as DNA damage and cancer. This might be useful informa-
tion from the point of view of identifying appropriate raw ma-
terials rich in these protective components, for the development
of safe food products and additives with appropriate antioxidant
properties. As mentioned previously, Brassica plants are rich in
many metals including calcium and iron-containing compounds.
However, there are substantial variations both within and be-
tween subspecies, which suggest a difference in potential health
benefits depending on genotype, as well as on the growth con-
ditions and environment. This review provides a massive body
of evidence supporting the nutritional value of Brassica vegeta-
bles and should ultimately lead the population to better food
choices.
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